
MATH 320 Unit 1 Exercises
Factorization and Congruence in Z

Division Algorithm Theorem: Let a, b ∈ Z with b ≥ 1. Then there exist unique q, r ∈ Z with
a = bq + r and 0 ≤ r < b. We write (a, b)→ DA→ (q, r).

Let a, b ∈ Z, not both zero. We define their greatest common divisor gcd(a, b) as the largest of
their common divisors. (this must exist since 1 is always a common divisor)

Let a1, a2 ∈ Z with a2 ≥ 1. We define the Euclidean algorithm as (a1, a2) → DA → (q1, a3), then
(a2, a3)→ DA→ (q2, a4), and so on until (ak, ak+1)→ DA→ (qk, 0).

Bézout’s Lemma: Let a, b ∈ Z, not both zero. Then there exist u, v ∈ Z with au + bv = gcd(a, b).
Conversely, for any x, y ∈ Z, we must have gcd(a, b)|(ax + by).

Positive Fundamental Theorem of Arithmetic: Let n ∈ Z with n ≥ 2. Then n has a factorization
into positive primes, that is unique up to order.

Let a, b, n ∈ Z with n ≥ 1. We say a is congruent to b modulo n, writing a ≡ b (mod n), if n|(a−b).

Let a, n ∈ Z with n ≥ 1. The congruence (or equivalence) class of a modulo n, written [a], is the
set {b ∈ Z : b ≡ a (mod n)}. We define Zn to be the set of equivalence classes modulo n, which
are {[0], [1], . . . , [n− 1]}. (each have many different names)

For Sep. 4:

1. Let a, b, c ∈ Z with b, c ≥ 1. Suppose that (a, b)→ DA→ (q, r). Prove that (ac, bc)→ DA→
(q, rc).

2. Let a ∈ Z. Prove that either there is some k ∈ Z with a2 = 3k, or there is some k ∈ Z with
a2 = 3k + 1. HINT: (a, 3)→ DA.

3. Let a, c, n ∈ Z with n ≥ 1. Define qa, ra, qc, rc via (a, n)→ DA→ (qa, ra) and (c, n)→ DA→
(qc, rc). Prove that ra = rc if and only if n|(a− c).

4. Prove the uniqueness part of the Division Algorithm Theorem. That is, suppose (a, b) →
DA→ (q, r) and also (a, b)→ DA→ (q′, r′). Prove q = q′ and r = r′.

For Sep. 9:

5. Let a, b ∈ Z with a 6= 0 and b ≥ 1. Suppose that (a, b) → DA → (q, r). Prove that
gcd(a, b) = gcd(b, r). HINT: Use one of the Unit 0 exercises.

6. Prove the Euclidean algorithm must terminate at some (ak, ak+1) → DA → (qk, 0). Prove
that that when it does, ak+1 = gcd(a1, a2). Use it to find gcd(234, 123) by hand.

7. If we remember the steps of the Euclidean algorithm, we can reverse them, back-substituting
repeatedly, to find u, v to satisfy Bézout’s Lemma. Apply this to (a, b) = (234, 123), and also
to (a, b) = (200, 123).

8. Let a, b ∈ Z, not both 0. Set d = gcd(a, b). Prove that gcd
(
a
d ,

b
d

)
= 1.



For Sep. 11:

9. Let a, b ∈ Z, not both 0. Prove that every common divisor of a, b divides gcd(a, b). Hence,
gcd is not only the largest, but also a multiple of all common divisors.

10. Let a, b, t ∈ Z with a, b not both 0. Prove that gcd(a, b) = gcd(a, b + at).

11. Let a, b ∈ Z, not both 0. Prove that gcd(a, b) = 1, if and only if there is no prime p with p|a
and p|b.

12. Prove the uniqueness part of the Fundamental Theorem of Arithmetic. That is, suppose
n = p1p2 · · · pj = q1q2 · · · qk, two factorizations into positive primes. Then j = k, and we can
reorder the q’s to get p1 = q1, p2 = q2, . . . , pj = qj . HINT: You may want to use results from
both the Unit 0 exercises and the Unit 0 exam.

For Sep. 16:

13. Let a, b, c, n ∈ Z with n ≥ 1. Suppose that a ≡ b (mod n). Prove that a + c ≡ b + c (mod n)
and also ac ≡ bc (mod n).

14. Let n ∈ Z with n ≥ 1. Prove that equivalence modulo n is reflexive, symmetric, and transitive.
That is, prove that ∀a, b, c ∈ Z, (i) a ≡ a; and (ii) if a ≡ b then b ≡ a; and (iii) if a ≡ b and
b ≡ c then a ≡ c.

15. Let a, n ∈ Z with n ≥ 1. Suppose (a, n)→ DA→ (q, r). Prove that [a] = [r].

16. Let a, b, n ∈ Z with n ≥ 1. Prove that a ≡ c (mod n), if and only if [a] = [c].

Extra:

17. Let a, b, c ∈ Z with a, b not both zero. Suppose a|bc and gcd(a, b) = 1. Prove that a|c.

18. Prove or disprove: If ab ≡ 0 (mod 15), then a ≡ 0 (mod 15) or b ≡ 0 (mod 15). Also, prove
or disprove: If ab ≡ 0 (mod 17), then a ≡ 0 (mod 17) or b ≡ 0 (mod 17).

19. Let a, b ∈ Z. Prove that a|b if and only if a2|b2. HINT: one direction is much easier.

20. Let a, n ∈ Z with n ≥ 2. Suppose that [a] = [1] modulo n. Prove that gcd(a, n) = 1.

21. Let a, b, n ∈ Z with n ≥ 1, and we work modulo n. Prove that either [a] = [b] or [a]∩ [b] = ∅.

22. Prove the existence part of the Division Algorithm Theorem. That is, prove that for any
a, b ∈ Z with b ≥ 1, there must exist some q, r ∈ Z with (a, b)→ DA→ (q, r).

23. Prove the existence part of the Positive Fundamental Theorem of Arithmetic. That is, prove
that for any n ∈ Z with n ≥ 2, there is at least one factorization of n into positive primes.

24. Prove Bézout’s Lemma.


