MATH 320 Unit 1 Exercises
Factorization and Congruence in Z

Division Algorithm Theorem: Let a,b € Z with b > 1. Then there exist unique ¢,r € Z with
a=>bq+rand 0 <r <b. We write (a,b) - DA — (q,7r).

Let a,b € Z, not both zero. We define their greatest common divisor ged(a,b) as the largest of
their common divisors. (this must exist since 1 is always a common divisor)

Let a1,a2 € Z with ag > 1. We define the Euclidean algorithm as (ai,a2) — DA — (qi1,as), then
(ag,a3) = DA — (q2,a4), and so on until (ag,ar+1) — DA — (qx,0).

Bézout’s Lemma: Let a,b € Z, not both zero. Then there exist u,v € Z with au + bv = ged(a, b).
Conversely, for any x,y € Z, we must have ged(a, b)|(azx + by).

Positive Fundamental Theorem of Arithmetic: Let n € Z with n > 2. Then n has a factorization
into positive primes, that is unique up to order.

Let a,b,n € Z with n > 1. We say a is congruent to b modulo n, writing a = b (mod n), if n|(a—b).
Let a,n € Z with n > 1. The congruence (or equivalence) class of a modulo n, written [a], is the

set {b € Z:b=a (modn)}. We define Z,, to be the set of equivalence classes modulo n, which
are {[0],[1],...,[n — 1]}. (each have many different names)

For Sep. 4:

1. Let a,b,c € Z with b,¢ > 1. Suppose that (a,b) — DA — (q,r). Prove that (ac,bc) - DA —
(g, 7c).

2. Let a € Z. Prove that either there is some k € Z with a® = 3k, or there is some k € Z with
a®? = 3k + 1. HINT: (a,3) — DA.

3. Let a,c,n € Z with n > 1. Define g4, 74, gc, 7c via (a,n) = DA — (qq,74) and (¢,n) - DA —
(ge,rc). Prove that r, = ¢ if and only if n|(a — ¢).

4. Prove the uniqueness part of the Division Algorithm Theorem. That is, suppose (a,b) —
DA — (g,r) and also (a,b) - DA — (¢',r"). Prove ¢ = ¢ and r = 1.

For Sep. 9:

5. Let a,b € Z with a # 0 and b > 1. Suppose that (a,b) - DA — (q,r). Prove that
ged(a, b) = ged(b, 7). HINT: Use one of the Unit 0 exercises.

6. Prove the Euclidean algorithm must terminate at some (ag,ag+1) = DA — (qx,0). Prove
that that when it does, ax+1 = ged(ar, az). Use it to find ged(234,123) by hand.

7. If we remember the steps of the Euclidean algorithm, we can reverse them, back-substituting
repeatedly, to find u, v to satisfy Bézout’s Lemma. Apply this to (a,b) = (234, 123), and also
to (a,b) = (200, 123).

8. Let a,b € Z, not both 0. Set d = ged(a,b). Prove that ged (%, g) =1.
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For Sep. 11:

. Let a,b € Z, not both 0. Prove that every common divisor of a,b divides ged(a,b). Hence,

gcd is not only the largest, but also a multiple of all common divisors.
Let a,b,t € Z with a,b not both 0. Prove that ged(a,b) = ged(a, b + at).

Let a,b € Z, not both 0. Prove that ged(a,b) = 1, if and only if there is no prime p with p|a
and p|b.

Prove the uniqueness part of the Fundamental Theorem of Arithmetic. That is, suppose
n=pip2---Dj = q1q2 - - - qk, two factorizations into positive primes. Then j = £, and we can
reorder the ¢’s to get p1 = q1,p2 = q2,...,p; = gj. HINT: You may want to use results from
both the Unit 0 exercises and the Unit 0 exam.

For Sep. 16:

Let a,b,c,n € Z with n > 1. Suppose that a = b (mod n). Prove that a+ ¢ =0b+ ¢ (mod n)
and also ac = be (mod n).

Let n € Z withn > 1. Prove that equivalence modulo n is reflexive, symmetric, and transitive.
That is, prove that Ya,b,c € Z, (i) a = a; and (ii) if @ = b then b = a; and (iii) if a = b and
b= cthen a=c.

Let a,n € Z with n > 1. Suppose (a,n) - DA — (q,r). Prove that [a] = [r].
Let a,b,n € Z with n > 1. Prove that a = ¢ (mod n), if and only if [a] = [¢].

Extra:

Let a,b,c € Z with a,b not both zero. Suppose a|bc and ged(a,b) = 1. Prove that alc.

Prove or disprove: If ab =0 (mod 15), then a =0 (mod 15) or b =0 (mod 15). Also, prove
or disprove: If ab =0 (mod 17), then a =0 (mod 17) or b =0 (mod 17).

Let a,b € Z. Prove that alb if and only if a?|b?>. HINT: one direction is much easier.
Let a,n € Z with n > 2. Suppose that [a] = [1] modulo n. Prove that ged(a,n) = 1.
Let a,b,n € Z with n > 1, and we work modulo n. Prove that either [a] = [b] or [a] N [b] = 0.

Prove the existence part of the Division Algorithm Theorem. That is, prove that for any
a,b € Z with b > 1, there must exist some ¢,r € Z with (a,b) - DA — (q,r).

Prove the existence part of the Positive Fundamental Theorem of Arithmetic. That is, prove
that for any n € Z with n > 2, there is at least one factorization of n into positive primes.

Prove Bézout’s Lemma.



